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In  the preceding paper (Grimshaw & Pullin 1985) we discussed the long-wavelength 
modulational instability of interfacial progressive waves in a two-layer fluid. In this 
paper we complement our analytical results by numerical results for the linearized 
stability of finite-amplitude waves. We restrict attention to the case when the lower 
layer is infinitely deep, and use the Boussinesq approximation. For this case the basic 
wave profile has been calculated by Pullin & Grimshaw (1983a, b). The linearized 
stability problem for perturbations to the basic wave is solved numerically by seeking 
solutions in the form of truncated Fourier series, and solving the resulting eigenvalue 
problem for the growth rate as a function of the perturbation wavenumber. For small 
or moderate basic wave amplitudes we show that the instabilities are determined by 
a set of low-order resonances. The lowest resonance, which contains the modulational 
instability, is found to be dominant for all cases considered. For higher wave 
amplitudes, the resonance instabilities are swamped by a local wave-induced 
Kelvin-Helmholtz instability. 

1. Introduction 
In the preceding paper (Part 1 - Grimshaw & Pullin 1985) we considered the 

long-wavelength modulational instability of small-amplitude interfacial waves propa- 
gating on the interface between two fluids of densities p1 and p, and undisturbed 
depths d, and d, respectively. Our results showed that instability occurs within an 
instability band in the (p, q)-plane, where (p, q)  is the modulation wavenumber. The 
configuration of the instability band is a function of the parameters p1/p2 and kd,, 
kd,, where k is the wavenumber of the basic wave. Various band configurations were 
identified, which are summarized in figure 1 of Part 1, while the dependence of the 
band configuration on the parameters is summarized in figure 6 of Part 1. In  all cases 
the results pertain to that portion of the (p, q)-plane where p and q are O(6).  Here 
6 is a non-dimensional measure of the wave amplitude. The instability bandwidth 
is O(6) and the growth rates are O(62). 

In  this paper we complement the results of the modulational instability analysis 
by numerical calculations for the stability of finite-amplitude waves subject to 
modulations of finite wavenumber (p, q). In two previous papers (Pullin & Grimshaw 
1983a, b) we calculated numerically the wave profiles for the special case when the 
lower layer is infinitely deep (i.e. kd, +a), using the Boussinesq approximation (i.e. 
p2 x p2, except in the buoyancy terms). Results were obtained for a range of values 
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of the wave amplitude 6 and the non-dimensional depth kd, and for a range of basic 
linear shear flows in the upper layer of the form U1-SZly. For the stability 
calculations we restrict attention to the case when there is no basic shear flow (i.e. 
iil = SZ, = 0). The steady waves are perturbed with an infinitesimal modulation of 
wavenumber (p, q), and we determine the resulting instabilities as functions of (p, q )  
and the wave parameters 6 and kd,. The stability analysis described here is based 
on the technique developed by McLean et al. (1981) (see also McLean 1982a, 6 )  for 
the study of the instability of finite-amplitude surface gravity waves (i.e. p1 = 0). 
Yuen (1983) has used the same technique to study the stability of interfacial waves 
when there is a basic current jump across the interface (i.e. El =+ 0, but SZ, = 0), and 
each layer is infinitely deep (i.e. kd,, kd,+oo). 

In $2 we formulate the stability problem for finite-amplitude interfacial waves, and 
seek normal-mode solutions describing modulations of wavenumber (p, q )  and growth 
rate 8 .  The formulation and preliminary analysis is analogous to that described by 
McLean et al. (1981) and McLean (1982a, 6 )  for surface gravity waves. In particular, 
we show that, for small wave amplitudes 6, instabilities will occur as a result of 
resonances. Each resonance can be regarded as the interaction of two sideband waves 
with N components of the basic wave. The N = 1 resonance does not exist, but all 
resonances exist for N 2 2. In  particular, the N = 2 resonance contains the 
modulational instability described in Part 1 (see the discussion in $5 of that paper). 
The numerical solution of the truncated eigenvalue problem is described in 53 and 
the results are presented in $4. Generally, our results have a qualitative similarity 
to the results for surface gravity waves. However, there are some differences; most 
notably, for small or moderate values of 6 (the wave amplitude) the instability is 
dominated by the lowest-order resonance N = 2, but for larger values of 6 this is 
swamped by the appearance of a local wave-induced Kelvin-Helmholtz (KH) 
instability. It is instructive to compare our results with those of Yuen (1983), who 
considered the stability of interfacial waves for the case when each fluid layer is 
infinitely deep (i.e. kd,, kd2+cO) and the density ratio p1/p2 is either 0.1 or 0.9. He 
also included a basic current jump El across the interface. When El = 0 his results 
are comparable to ours. However, when El 9 0, there is a short-wavelength KH 
instability for the undisturbed interface which persists for waves of small amplitude. 
This KH instability is distinct from the wave-induced KH instability calculated here. 
We also note from Yuen’s results that the low-order resonance instabilities of 
relatively long wavelength persist when El =+ 0. Further discussion of our results is 
taken up in $5.  In  Appendix A we show that the Boussinesq approximation is 
dynamically self-consistent. In  Appendix B we compare viscous attenuation of the 
wave amplitude with the instabilities calculated here, and show that for wave 
parameters appropriate to the oceanic pycnocline the viscous attenuation may be 
neglected. 

2. Preliminary analysis 
We shall consider finite-amplitude progressive waves on the interface between two 

incompressible and inviscid fluids. In coordinates (x,y,z) the basic wave has 
wavelength h and propagates in the x-direction with speed c. Gravity g acts in the 
negative y-direction, while the fluid densities are p1 and p2 (p2 > p,), where subscripts 
1 and 2 refer to fluid properties above and below the interface. The upper fluid is 
bounded above by a rigid plane at y = d ,  and the lower fluid is of infinite depth (i.e. 
d 2 + m  in the notation of Part 1);  the x-axis is the mean level of the wave. Pullin 
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& Grimshaw (1983a, b, henceforth referred to as PG) have described some of the 
properties of steady progressive waves using the Boussinesq approximation for the 
case when the upper fluid has a basic linear shear flow ii,-a, y with either El = 0 or 
Q, = 0. Here we propose to study the linearized stability of these waves for the case 
when the upper fluid has no basic flow (i.e. El, Ql = 0). It is convenient to employ 
the same non-dimensionalization used in PG, which was also used in Part 1.  We use 
the lengthscale A/n and timescale (hlxag);, where a = (p2-p1)/(pa+p1) is the 
Boussinesq parameter. As far as possible we shall use the notation used in PG. Thus 
we choose a frame of reference at rest with respect to the steady progressive wave. 
The dimensionless forms of ( x - c t ,  y ,  z, t ,  4, A,  d , ,  c, p,, p2) are (X, Y, 2, T ,  6, n, 
D,, C, 1 -a, 1 +a), where 24 is the crest-to-trough wave amplitude (note that 
4 x 2 I A 1 ,  where B I A I is the wave amplitude defined in Part 1, (4.5)). 

The equations of motion have been described in Part 1 (see $2 and (2.1), (2.2)). 
Here we restrict attention to the Boussinesq approximation a + O  (see Appendix A). 
In  each fluid the flow is irrotational with a velocity potential @, (j = 1,2), and the 
velocity field U, = (U,, 5, W,) = V@,. At the upper boundary Y = D,  we put V, = 0, 
while V2+0 as Y + -  00. It is shown in Appendix A that for a+O the rigid upper 
boundary is a dynamically self-consistent approximation to a free-surface upper 
boundary. The boundary conditions at the interface Y = +(X, Y ,  T )  are 

- a+ a+ a+ 
aT+U -+W -= 6 (j= 1,2) on Y = + ,  lax Jaz (2.1 a, b )  

(2.14 

Next we let the steady plane progressive wave discussed in PG be denoted here by 
r ( X )  and i ( X ,  Y). We then linearize the equations of motion about this solution, and 
write 

( 2 . 2 ~ )  

@, = i , ( X ,  Y )  + $;(X, Y ,  2, T )  (j = 1,2), (2.2b) 

where I+’ I -g I ?j I and I $; I 4 I 3, I. The perturbed velocity potentials q5; satisfy 
Laplace’s equation in each fluid, while the linearized boundary conditions are 

- + U  -++’-++’ -v; = O  ( j =  1,2) on Y = 7 ,  (2.3a,b) a+’ - a+’ a7 
aT lax *ax 

ay - l a y  - 
-av2 - a 7  - a 0  ++’ 2 + U 2 - + V  2-U,2-V - - 0  on Y = 9 ,  ( 2 . 3 ~ )  ( ay 2 a y  

where u; = (u,, v,, w,) = V#; is the perturbed velocity field. It may be shown that, in 
the subsequent formulation of the eigenvalue problem, use of both equations (2.3a, b) 
leads to a degenerate system with concomitant infinite eigenvalues. Instead we use 
a single kinematic condition ( 2 . 3 ~ )  and introduce an auxiliary normal-velocity 
condition obtained by eliminating a+‘/aT from (2.3a, b). This is 

+- -w;+v,=o I ’  au, aU2 a7 aF a K  {( ay ay ) ax ay ay ax 
(ul-#iJ2)-+(u;-u;)-++’ a+’ 

ax 
on Y = 7. (2.4) 
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We follow the approach used by McLean et al. (1981) and McLean (1982u, b) and seek 
a solution of the form 

( 2 . 5 ~ )  
m 

7' = exp{ST+i(PX+QZ)) I: a, exp (SimX), 
-m 

(2.5b) 
m cash [R,(Dl- Y)] 

$; = exp{XT+i(PX+QZ)} E b ,  exp (2imX) 
-a, cosh[R,D,] ' 

( 2 . 5 ~ )  

where R, = [(2m+P)2+Q2]k (2.5d) 

The physical disturbance corresponds to the real part of (2.5a-c). Here P, Q are 
arbitrary real numbers and the proposed solution (2.5u-c) describes a modulation 
whose wavenumber is (P,&) and whose growth rate is the complex number S 
(compare Part 1, $4). Once the steady wave 7, sj is known, substitution of (2.5u-c) 
into (2.3a, b) and (2.4) yields an eigenvalue problem for the complex coefficients 
(a,, bm,c,) and the eigenvalue S. Instability corresponds to Re (8) > 0, and the aim 
of the analysis is to determine the instability as a function of (P,Q) and the 
parameters 6 and D, which describe the steady progressing wave. The numerical 
solution of this eigenvalue problem is described in $3;  in the remainder of this section 
we present some preliminary analysis pertaining to the limit S + O ,  where we recall 
that 6 is the amplitude of the steady progressive wave. The analysis is analogous to 
that developed by McLean et al. (1981) and McLean (1982a,b) for surface gravity 
waves. 

When S = 0 the steady progressive wave is f = 0, sj = - C, X, where C, is the phase 
speed for an infinitesimal steady progressing wave, and is given by (see Part 1, or 

C, = (1 + coth 2DJ-i. (2.6) 
PG) 

In this limit the eigenfunctions and eigenvalues are 

7; = exp (8, T +  i((P+ 2n) X+ Q Z ) } ,  ( 2 . 7 ~ )  

S, = -ign, CT, = -CO(P+2n)+ W(P+2n,Q), (2.7b) 

where 2R };, R = (P"+Q,) f .  
w(p' = ' { 1 + coth RD, 

( 2 . 7 ~ )  

Here the sign of W is chosen so that W(P, Q) = - W (  - P, - Q). These eigenfunctions 
are just infinitesimal waves with wavenumber k = (k, I )  = (P+2n, Q). Their fre- 
quencies are - kC,+ W(k),  which corresponds to  the linear dispersion relation in a 
frame of reference moving with speed C,. Note that there is a degeneracy in the choice 
of P since u,(P, Q) = c~,+~(P-2, Q). The degeneracy is a consequence of the represen- 
tation (2.5a-c). Following McLean (1982a, b), we will label the eigenfunctions by 
(P, Q )  and specify the index of the dominant coefficient a, ; this fixes the dominant 
wavenumber k = (P+2n, Q ) .  

For small 6, instabilities arise whenever two of these linear modes satisfy the 

(2.8) 
resonance condition 

for specified P, Q and some integers n, N with N > 0. This resonance condition is 
readily interpreted in a fixed frame of reference where the linear dispersion relation 
is w = W ( k ) .  We define k, = (P+2n ,Q) ,  k,  = (P+2n+2N, Q )  and k, = (2,0), where 

g n ( P ,  Q )  = r n + N ( P ,  Q )  
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FIGURE 1. Resonance curves (stability bands, S = 0), a = 0, Dz-+oo. 

Values of D, shown. -, N = 2 . - - -  , ,  N = 3 .  

the index zero corresponds to the steady progressing wave; similarly we define 
w1 = W ( k l ) ,  w2 = W ( k 2 )  and w, = W(k,) .  The resonance condition (2 .8)  then becomes 

k2-k,  = Nk,,  w2-w1 = NO,. (2.9) 

Note that without loss of generality wo can be taken positive, but wl, can take either 
sign. The lowest-order resonance is N = 1 and corresponds to a triad resonance. 
However, for the interfacial waves being considered here it can be shown that the 
group velocity V is always less than the phase speed C in absolute value. By using 
arguments similar to those employed for surface gravity waves (see Phillips 1960) 
it may be shown that with N = 1 the resonance condition (2.9) cannot be met. 

The next resonance is N = 2 and corresponds to a special case of a quartet 
resonance (see Yuen & Lake 1982). It can now be shown that the resonance condition 
(2.9) can be met with w1 < 0 and o2 > 0. The resonance condition generates a curve 
in the (P, (?)-plane, and this is shown in figure 1 for two values of D,. The resonance 
curve is a figure-of-eight very similar to the resonance curve obtained for surface 
gravity waves (Phillips 1960). Significantly, the resonance curve passes through 
the origin of the (P,Q)-plane, and near the origin the instability reduces to the 
long-wavelength modulational instability discussed in Part 1 ($5) .  Further, all the 
higher-order resonances N 3 3 exist; the resonance curve for N = 3 is shown in 
figure 1. We expect that the growth rates associated with these resonances are O ( P )  
(McLean 1982a, b ;  Yuen & Lake 1982). Also we note that the resonance curves are 
symmetrical about P = - 2n- N and Q = 0. Using the degeneracy in the choice of 
P and n discussed above, we follow McLean (1982a, b) and choose n = -$N for even 
N ,  and n =  -$(N+l) for odd N. With this choice the resonance curves are 
symmetrical about P = 0, Q = 0 for even N ,  and symmetrical about P = 1, Q = 0 for 
odd N .  The resonance condition (2.9) thus becomes 

(2.10) 

Here the superscript & corresponds to the choice of sign in ( 2 . 7 ~ )  and corresponds 
to w2 > 0 and o1 < 0. 
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3. Numerical analysis 
Numerical solutions for the stability characteristics of interfacial waves with finite 

wave amplitude 6 are now obtained as follows. First, we consider the calculation of 
the required properties of the basic wave. From the numerical solutions of PG, the 
wave profile and the velocity of each fluid at  the interface may be expressed in the 

z(e) = X(e)+i?j(e) = e +  E [A, sin(2ne)+iBn cos(2ne)], ( 3 . 1 ~ )  
form N-1 

n-0 

N -. 
U,(e) - i Q(e) = E [Fg) cos ( h e )  - i@ sin (2ne)l ( j  = 1,2). (3.lb) 

n-o 

Here e is an interfacial parameter which varies over the range 0 to x .  The coefficients 
A,, B, together with a further set of coefficients for the velocity jump at  the interface 
are determined in PG from the kinematic and dynamic boundary conditions at  the 
interface Y = 7. The coefficients Ft), Gt)  are then obtained by fitting a truncated 
Fourier series to the respective velocity components at the interface, using equation 
(40) of PGu. For the basic-wave solutions considered here N was increased within the 
range 15 < N < 60 until I AN I, I BN I were 0(10-15) in 14 digit arithmetic. An 
exception to this was D, = O.lx, 6 = 0,05n, where I A,, I ,  1 B,, I were 0(1O-l2).  All 
properties of the basic wave that appear in (2.3) and (2.4) may be readily obtained 
from (3.1). 

Next we truncate the infinite series in (2.5a-c) to finite series over the range 
- M  < m < M and substitute the truncated series into (2.3a, c) and (2.4). The 
resulting equations are now satisfied at 2M+1 points on a single wavelength, 
0 < X < n, of the basic wave, chosen to give equal chordlength spacing along the 
wave interface : 

and j = 1, . . . ,2M+ 1. This leads to 6M + 3 equations, which may be written in matrix 
form as 

AJa, bl + 4 c l  = WJa,  bl+ B,[cl}, (3.2a) 

C[C] = D[a, b].  (3.2b) 

Here A,, B, are (4M+2) x (4M+2) complex matrices, A,, B, are (4M+2) x (2M+ 1)  
complex matrices, C is a ( 2 M + l ) x ( 2 M + l )  complex matrix, and D is a 
(2M+ 1)  x (4M+ 2) complex matrix. Their elements are determined from the procedure 
described above. Further, [a, b] is a column vector with components { u - ~ ,  . . . , uM, 
b-M, . . . , bM} and [c] is a column vector with components {cM, . . . , cM} .  Premultiplying 
(3.2b) by C-l and substituting into ( 3 . 2 ~ )  gives the (4M+2) x (4M+2) eigenvalue 

(3-3) 
problem 

with eigenvalue S and eigenvector [a, b]. Using the symmetry properties of the basic 
wave it may be shown that, if S and [a ,b]  comprise a solution of (3.3), then so do 
-S* and [-a*,b*]. Hence the eigenvalues are either pure imaginary or occur in 
conjugate pairs. Instability thus corresponds to the existence of an eigenvalue with 
Re (8) + 0. 

(A, +A, c - ID)  [a, b1 = S(B, + B, c -ID) [a, 4 

The numerical procedure is as follows: 
(i) Given D,, 6, first calculate the basic wave from (3.lu,b); 
(ii) fix (P, &) and calculate the matrices in (3.2u, b) ;  
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(iii) determine C-l and perform the matrix operations in (3.3) ; 
(iv) solve the eigenvalue problem (3.3). 

This last step was done using a version of the QZ-algorithm due to Garbow (1978). 
In some cases, the calculations were checked by results based on an LZ-algorithm 
(Kaufman 1975). All computations were performed in 14 digit arithmetic on a 
VAX 11/780 computer. Each calculation produces a set of 4M+2 eigenvalues. An 
index m was assigned to each member corresponding to max I a,,, I in the corresponding 
eigenvector. By tracking eigenvalue trajectories for 6 > 0 in the complex plane from 
the known value when 6 = 0, S$, (2.7 b, c), this index was verified and a branch sign 
( f ) determined. Here we recall that f refers to the choice of sign in (2.7 c). Instability 
as 6 increased from zero always occurred when the imaginary parts of distinct 
eigenvalues coalesced, in agreement with (2.10), and the eigenvalues then formed a 
conjugate pair. The boundaries of the instability bands were determined using 
various strategies based on the convergence of the imaginary parts of the appropriate 
resonant pair. 

A difficulty encountered with this procedure as 6 increased was the appearance of 
very large values of Re (8;) for I m I + M. When Re (8) is plotted as a function of m 
these exceptionally large values of Re (8$) appeared in the spectrum tail, bounding 
a central band which was stable except for the resonant pairs (see figure 10). The 
central bandwidth decreased to a limiting width, which was independent of M above 
a threshold value, for large values of 6. We believe that this divergence is physically 
based, and can be interpreted as the onset of a local wave-induced KH instability 
due to the velocity jump across the interface. This is discussed further in $4. 

Most of our calculations were carried out for the cases Dl+oo, D, = 0 . 2 5 ~  and 
D, = O.ln, with M in the range 10 < M < 32. In terms of the modulational instability 
discussed in Part 1, these cases correspond to instability band configurations of case 
A, case A and case C respectively (see figure 6(a) of Part 1).  The results of Part 1 
give a transition from case A to B at D,  = 0 . 2 4 ~ ~  a further transition to case C at 
D,  = 0.197t, and finally a transition to case B again at D,  = 0.033~.  Some calculations 
were attempted for a long wave with D,  = 0 . 0 1 ~ ,  but these were unsuccessful owing 
to resolution problems. For each D,,  6 = 0 . 0 1 ~ ,  0 .025~,  0 . 0 5 ~ ,  O.O75x, ..., max (6); 
here max(6) is that value in the sequence beyond which satisfactory convergence 
(with 10 < M < 32) could not be achieved owing to the difficulty discussed above. 
The values of max (6) may be compared with Smax, the maximum amplitude of the 
basic wave found in PG. Thus for Dl+m we find max (6) = O.O75x, while 
a,,, = 0 .188~;  for D, = 0 . 0 2 5 ~  we find max (6) = 0 .075~  while S,,, = 0 . 1 4 ~ ;  for 
D, = 0 . 1 ~  we find max (6) = 0 . 0 5 ~  while S,,, = 0.096~.  Thus only waves of moderate 
amplitude could be treated. 

4. Results 
The main results of our numerical calculations for the N = 2 and N = 3 instabilities 

are shown graphically in figures 2-8. The maximum growth rates for each of these 
bands are shown in tables 1-3. For small 6 the bandwidth for the N = 2 instability 
(see figures 2 , 4 , 6  and 8) is O(S),  and the growth rates are O(P). This is in agreement 
with the modulational instability discussed in Part 1. 

For the case B, +oo the N = 2 instability bands are shown in figure 2 and the N = 3 
instability bands in figure 3. The maximum growth rate for the N = 2 instability 
(see table 1) is always for a two-dimensional disturbance (i.e. for a disturbance aligned 
with the basic wave direction). There is no evidence of a rapid shrinking of the N = 2 



324 D. I .  Pullin and R. H .  J .  Grimshaw 

0.002 

0 

0 I 2 3 

0.002 
R d S ) C  

1 2 3 P 

I L O  

1 

Q 

0 1 2 
1 P 3 

FIQURE 2. Stability diagrams with superposed growth rates (at Q = constant) for N = 2 instability, 
D,+oo; shaded regions are unstable bands; ---, resonance curve (instability band 8 = 0). (a) 
8 = 0 . 0 1 ~ ;  ( b )  0 .025~;  (c) 0 . 0 5 ~ ;  (d )  0 .075~ .  Note different growth-rate scale for (d).  
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FIQURE 3. Stability diagram for N = 3 instability, Dl-+co. ---, N = 3 resonance curve; ----, 

S = 0 (8 = 0.051~). 
instability bands; values of 8 indicated; .-. , N = 2 resonance curve; - *-. . , S = 0 (8 = 0 )  ; . . . - , 

N = 2  N = 3  

8jn P Q Re (8) Im (S) P Q 
0.01 0.15 0 1.17 x lo-* 5.28 x lo-$ 1 3.3381 
0.025 0.33 0 5.72 x lo-* 1.139 x 10-l 1 3.2560 
0.050 0.52 0 1.52 x lo-* 1.688 x 10-l 1 2.9873 
0.075 0.65 0 2.18 x 1.921 x 10-1 1 2.6034 

TABLE 1. Maximum growth rate Re (S) for N = 2 instability band, Dl+co. Entries for N = 3 show 
position of instability band near point of probable max [Re (S)]. This band wa8 not detected 
explicitly. 

instability band with increasing 8, similar to that found by McLean et al. (1981) and 
McLean (1982a) for surface gravity waves in deep water. Yuen (1983) examined the 
stability of interfacial waves for the case when there is a basic current jump ii, across 
the interface and the density ratio pl/pa is 0.1 or 0.9. Our parameter space comes 
closest to that studied by Yuen in figure 2(b) ,  which corresponds to the case N = 2,  
pl/pe = 0.9, ii, = 0 ,  8/x % 0.032 in Yuen’s figure 4(d) .  We find that there is good 
agreement in the calculated shape of the N = 2 instability band. In  our calculations 
the N = 3 instability bands were not detected explicitly. The curves shown in figure 3 
were inferred by tracking the convergence of Im (S:) ++ Im (Sr,) from both sides. 
We estimate that the bandwidth in the (P,Q)-plane does not exceed even for 
max (8) = 0 . 0 7 5 ~ .  It is evident that the N = 3 instability is insignificant. 

The case D,  = 0 . 2 5 ~  is shown in figure 4 (N = 2), figure 5 (N = 3) and table 2. This 
case is close to the value D, = 0 . 2 4 ~  at which the modulational-instability theory of 
Part 1 predicts a transition from case A to case B. This evidently accounts for the 
lower growth rates and narrower bandwidth for the N = 2 instability with long- 
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FIGURE 4. Stability diagrams with superposed growth rates (at Q = constant) for N = 2 
instability, D, = 0 . 2 5 ~ .  (a) 6 = 0 . 0 1 ~ ;  ( b )  0.025n; (c) 0 . 0 5 ~ ;  ( d )  0 .075~ .  
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8 = 0,0.01n 

3 

Q 

2 

1 

0 I 2 3 4 5 6 7 

FIGURE 5. Stability diagram for N = 3 instability, D, = 0.25%. ---, N = 3 resonance curves; 
shaded areas are instability bands; values of S indicated; *-., N = 2 resonance curve. 

P 

,,” = 0, 0.;o.025ff 

3 

Q 

2 

1 

0 I 2 3 4 5 6 7 

FIGURE 5. Stability diagram for N = 3 instability, D, = 0.25%. ---, N = 3 resonance curves; 
shaded areas are instability bands; values of S indicated; *-., N = 2 resonance curve. 

P 

N = 2  N = 3  

S I X  P Q Re (S) Im(S) P Q &(S) Im(S) 

0.025 2.610 0 3.95X 1.044 1 3.002 4 . 7 ~  10-4 10-8 

0.010 2.617 0 6 . 4 ~  1.045 1 3.0803 3 x  10-6 

0.050 2.610 0 1 . 4 9 ~  lo-* 1.039 1 2.746 3 . 5 8 ~  
0.075 2.590 0 3 . 2 8 ~  1.OOO 1 2.361 1 . 0 6 ~  

TABLE 2. Maximum growth rate Re (8) for N = 2 and N = 3 instability bands, D,/x = 0.25 

wavelength modulations (i.e. P, & very small) when compared with other cases for 
the same value of 6. The maximum growth rate is still for a two-dimensional 
disturbance, but now occurs near the extremity of the figure-eight resonance curve 
(given by P = 2.6169). As 6 increases, the long-wavelength modulation instability 
near the (P, &)-origin is transformed from a two-dimensional instability (case A) to 
a transverse instability (case B); the transition occurs for 0 . 0 5 ~  < 6 < 0 .075~ .  The 
N = 3 instability bands have a bandwidth 0(d2) for small 6, and agrowth rate of 0(d3).  
For all 6 considered, it is a weaker instability than the N = 2 instability. 

The case D, = 0 . 1 ~  is shown in figure 6 (N = 2), figure 7 (N = 3) and table 3. The 
long-wavelength modulational instability in the N = 2 instability corresponds to case 
C of Part 1. The maximum growth rates now occur for a transverse modulation. The 
N = 3 instability bands again have growth rates O(cY3), but are substantially larger 
than the corresponding growth rates for the case D, = 0 . 2 5 ~ .  However, the N = 3 
instability is still weaker than the N = 2 instability. 

In  figure 8 we show one calculation for the N = 2 instability when D, = 0.0511. with 
6 = 0 . 0 1 ~ .  Like the case D, = 0 . 1 ~  this is also a case-C modulational instability, but 
now the growth rates of the transverse instability are substantially larger for the same 
value of 6 (see figure 6a). 
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I 

Q 

0 1 2 3 
P 

1 

Q 

0 1 2 3 P 

FIQURE 0. Stability diagrams with superposed growth rates (at Q = constant) for N = 2 
instability, D, = 0 . 1 ~ .  (a) 8 = 0.01~;  ( b )  0.025~; (c) 0.050~. 
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3 r  

Q 

2 

0 1 2 3 4 5 I 

FIGURE 7 
areas are 
(6 = 0); * 

. Stability diagram for N = 3 instability, D, = 0 . 1 ~ .  ---, N = 3 resonance curve; shaded 

* * . , 8 = 0 (6 = 0.05~) .  
instability bands; values of S indicated; .-., N = 2 resonance curve; . .-. * ,  8 = 0  

N = 2  N = 3  

P Q Re (8) Im(S) P Q Re(8) Im(8) 

0.01 0.70 0.480 2 . 3 7 ~  1 . 1 9 3 ~  10-l 1 1.981 1.1 x 
0.025 0.95 0.638 1 . 1 0 ~  lo-% 1.897 x lo-' 1 2.049 2.81 x lo-' 
0.050 1.20 0.810 2.41 x 2 . 9 7 0 ~  10-1 1 2.110 2.11 x lo-% 

TABLE 3. Maximum growth rate Re (8) for N = 2 and N = 3 instability bands, DJx + 0.10 

FIQURE 8. Stability diagram for N = 2 instability, D, = 0.05~,  6 = 0 . 0 1 ~ .  

In figures 3 and 7 we show the S = 0 trajectory in the (P, &)-plane for 6 = O,O.O5x 
for the cases D, +a and D, = 0 . 1 ~  respectively. Disturbances with 8 = 0 are steady 
in the frame of reference of the basic wave, and for rational values of (P, &) represent 
possible bifurcations of the basic wave to steady periodic wave patterns. Such 
bifurcations have ,been found for surface gravity waves in deep water by Chen & 
Saffman (1980) in the two-dimensional case, and by Saffman & Yuen (1980) and 
Meiron, Saffman & Yuen (1982) in the three-dimensional case (see also Yuen & Lake 
1982). Here the S = 0 trajectory remains attached to the origin of the (P, &)-plane 
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2o I r 2  
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I L O  I / \  r 

FIGURE 9. Stability boundaries and superposed growth rates (at Q = constant), (a) Dl-+co; 
( b )  D,  = 0.1~.  -, modulational instability; ---, numerical, S = 0.01~. 

(the full trajectory is symmetric about the line P = 1, but the second branch has not 
been displayed). Hence we may conclude that there are no steady two-dimensional 
bifurcations for the range 0 < 8 < max (8). There are, of course, an infinite set of 
three-dimensional bifurcations. 

In figure 9 we compare the numerical results with the modulational-instability 
calculations of Part 1. For the case D,-+oo, 8 = 0 . 0 1 ~  (figure 9a)  the modulational- 
instability calculations overpredict the bandwidth and growth rate. However, for the 
case D, = O . ~ X ,  8 = 0 . 0 1 ~  (figure 9 b )  there is good agreement. 

We next give arguments to support the hypothesis that the spectrum divergence 
at large m can be attributed to local wave-induced KH instability (see the discussion 
at the end of $3). Consider the stability of a flat, infinite vortex sheet with local 
velocity difference Ul - U2, and inclined to the horizontal at  an angle 8. We consider 
the case D,+oo for simplicity. Using the same notation employed in $2 (see (2.5a-d)), 
the linearized dispersion relation is 

S$, = 2[ - i(2m + P) ( ul + U2) f { (2m + P)2 ( U, - 02)2 - 4R, cos e}i]. (4.1) 

For 12m+ PI < k, the vortex sheet is stable, where k, satisfies the relation 

k:( U, - Q2 = 4 cos e {k; + Q Z } ~ .  (4-2) 

Otherwise the vortex sheet is unstable. Putting k, = I2m,+ PI with m, > 0, we see 
that m, is effectively a threshold index for the onset of KH instability. For the cases 
considered here k, B I PI, and hence there is local KH instability for I m I 2 m,. For 
the basic wave we now identify O,, U2 as the local fluid speed a t  the interface, and 
put cose = (1 +?jz)-t, and evaluate (4.2) at that point on the interface where 
cose ( Ul- UJ2 is a minimum. This always occurred at  the wave crest. In figure 10 
we show a plot of the continuous Re(8,) spectrum so obtained from (4.1), and 
compare this with the calculated discrete spectrum for 8 = 0 . 0 5 ~  at three values of 
(P, Q). Note that only the case P = 0.5, Q = 0 (figure 10a) contains an eigenvalue 
corresponding to an N = 2 instability. There is reasonable agreement with the value 
of m,. For I m I > m, the predicted values of Re (8,) overestimate the calculated 
values. This is probably because the expression (4.1) is the result of a local analysis 
and takes no account of wave curvature and the dynamical properties of the basic 
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wave. It can be seen from (4.2) that increasing 1 Q I inhibits the KH instability, and 
this is reflected in the results shown in figure 10; most notably, the population of the 
discrete spectra decreases as I Q I increases. In figure 11 we show the phase speed (i.e. 
-1m (S) / (P+ 2m)) of the unstable wave-induced KH waves whose growth rates are 
shown in figure lO(a). Again there is reasonable agreement with (4.1). The main wave 
speed for the case shown is 0.724759677 ... . Hence the wave-induced KH waves are 
nearly stationary with respect to the fluid at infinity. The calculated values of mc 
from (4.2) for the case D1+m, P = 0.5, Q = 0 are m, = 250 (6 = O.Olx), m, = 41 
(6 = O.O25x), m, = 10 (6 = 0 . 0 5 ~ )  and m, = 5 (6 = 0.075~).  For this same case 
S,,, = 0.188~. Thus the local KH instability sets in for wave amplitudes well below 
a,,,. Further, since our results indicate that m, increases as 6 decreases, we conclude 
that this wave-induced KH instability disappears in the limit S + O  (i.e. gl- V,+O, 
m,+m as 6+0). This contrasts strongly with the KH instability discussed by Yuen 
(1983), which may in general be attributed to the basic current jump (GI =I= 0) at the 
interface when 6 = 0. Our wave-induced KH instability may be related, however, to 
the ‘nonlinear mode-jumping’ phenomenon observed by Yuen in one case (see his 
figure 4g), and which he interpreted as being due to the effect of finite amplitude on 
the basic KH instability. 
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FIGURE 11. Im (S) spectrum plotted as phase speed for that part of spectrum with Re (8) + 0. 
D 1 + ~ ,  S = O.O5n, P = 0.5, Q = 0, M = 28. 0 ,  Numerical; --- , (4.1). Main wave 
speed = 0.724759677 ... . 

5. Conclusions 
We have shown that, for small to moderate wave amplitudes, interfacial waves are 

subject to essentially the same hierarchy of three-dimensional resonant instabilities 
that have been identified for surface gravity waves. The mechanism of the instability 
can be interpreted as the resonant interaction of two sideband infinitesimal waves 
with N components of the basic wave where N 2 2. Further, the N = 2 resonance 
band incorporates the modulational instability studied in Part 1. 

The particular case studied here is the stability of interfacial waves at the interface 
between two fluids when the lower layer is infinitely deep, using the Boussinesq 
approximation. We investigated both the N = 2 and N = 3 instabilities, but for small 
to moderate wave amplitudes we have found that the N = 2 instability dominates. 
This has a bandwidth O(6) and growth rates O(cY2) for small wave amplitudes 6, while 
the N = 3 instability has growth rates O(a3). When the upper layer is also infinitely 
deep the N = 3 instability was too weak to be detected. When D,, the upper-layer 
depth, is decreased we find that the N = 2 instability at first weakens but then grows 
again, while the N = 3 instability becomes stronger (but is always weaker than the 
N = 2 instability). 

For larger values of the wave amplitude 6 we find that the dominant instability 
mechanism is a local wave-induced KH instability. This sets in at  wave amplitudes 
generally much less than Smax, the maximum basic wave amplitude. The numerical 
evidence suggests this is always present at sufficiently high wavenumbers for all 6 > 0, 
but that it appears in the tail of the discrete eigenvalue spectrum only when the 
truncation wavenumber M exceeds a threshhold value. In reality, this KH instability 
would be further restricted or eliminated, by such effects as finite layer thickness 
between the two fluids, or by such effects as friction and surface tension at the 
interface. We thus suggest that the KH instability should primarily be viewed as a 
result of the vortex-sheet model of the basic wave that we have used. However, we 
note that there is some observational evidence for KH instability in regions of 
wave-induced shear intensification (see e.g. Woods 1968; Browning 1971 ; Thorpe et 
al. 1977). Nevertheless, by analogy with the known behaviour of water waves (see 
e.g. Melville 1982 ; Su 1982; Su etal. (1982)), i t  seemslikely that theresonant-instability 
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mechanism identified here is the appropriate mode to describe the time evolution of 
interfacial waves of small or moderate amplitude. 

Appendix A. The Boussinesq approximation 
In $ 1 of Part 1 we indicated that one of the motivations for the present study was 

the prevalance of large-amplitude internal waves on the oceanic pycnocline. However, 
in the two-layer models discussed in Part 1 and this paper, we have replaced the 
oceanic free surface with a rigid lid. For the small density differences that occur across 
the oceanic pycnocline it is well known that this is a valid approximation for linear 
internal waves. Here we wish to show that it is also a dynamically self-consistent 
approximation which can be justified a posteriori for the kite-amplitude waves and 
their perturbations considered here. 

We consider a two-layer fluid with a lower rigid boundary at y = -az, an interface 
at y = 7 separating a fluid of density p1 from a fluid of density p2, and a free surface 
at y = d, + 5. Using the same notation employed in Part 1 ($2), we assume irrotational 
flow in each layer with velocity potential q55 and velocity fields u5 = V#j. For 
simplicity we are assuming that there is no basic flow 4 in either fluid. The boundary 
conditions at y = 7 are given in Part 1 ((2.1 and (2.2)). The boundary condition at 
y = d,+cis 

-+u,-+w ac ac a5 - = v l  ony=d ,+c ,  
at ax az 

at+$Iullz+gQ=O aq51 ony=d ,+c .  

We now introduce dimensionless coordinates based on a lengthscale A I R  and 
timescale (A/xcrg)i, where a = (p2-p1)/(p2+p1) is the Boussinesq parameter, and 
a + O  in the Boussinesq approximation. Using the same notation for the dimensionless 

~ ~~ 

variables described in $2, we find that (A 1 a, b) become 

- ac ac ac 
aT+ U, ax+ W, a = V, on Y = D,+c, 

+ C = O  on Y = D , + ~ .  

The interface conditions become (2.1 a, b) and 

(l+a)($+:l~r,12 + 2 7 = 0  on Y = 7 .  

We now seek a formal expansion in powers of a. Thus 

7 = ? p + H C ' ) +  ... , 
c = QO)+aQl)+ ... , 

with similar expansions for G5. To leading order Qo) = 0 from (A 2b) and (A 2a) then 
gives V p )  = 0 on Y = D,, which is just the rigid-lid boundary condition. Further, Gf') 
and 7 ( O )  satisfy the interfacial conditions (2.1a-c) used in our analysis. Further, from 
(A 2b) 

$ 1  up' 12. (A 5 )  
aep 

Q1) = -aT- 
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For the small to moderate wave amplitudes 6 discussed here the right-hand side of 
(A 5) is O(1).  This conclusion remains true when the linearized perturbation terms 
are superimposed on the basic wave, as even for the unstable waves, the growth rates 
are 0(a2) and remain small for long timescales. Thus 01C(l), the leading term in the 
free-surface displacement is O(0c). In the oceanic application 01 is in the range 
10-3-1 0-2 .  

Appendix B. Timescale for viscous dissipation 
Here we obtain an estimate of the timescale for viscous dissipation of the basic wave 

for comparison with the growth rate of the calculated resonant instability. We 
bonsider interfacial waves propagating on the interface between two fluids of densities 

and p2 and undisturbed depths d, and d, in the limit of infinitesimal wave amplitude P i.e. 6+0). Explicit expressions for the wave parameters are given in PGa. There are 
four contributions to the viscous dissipation : 

(1)  dissipation in the interior of the fluid above and below the interface; 
(2) dissipation within the unsteady viscous shear layers at the interface; 
(3) dissipation within the bottom boundary layer at y = - d 2 ;  
(4) dissipation within the top boundary layer at y = d,. 

Note that if we regard y = d, as a free surface, which can be justified in the Boussinesq 
approximation (see Appendix A), then the contribution (4) can be neglected. To find 
these contributions we use the method described in Lamb (1932, $9329, 348). Thus 
we consider the vertically integrated time-averaged energy equation 

_-  aE - -A (s"' p (Z) 'dy),  
at 2 -dp 

where E = M P 2 - P J  A2.  (B 1b)  

Here 24 is the crest-to-trough wave amplitude, and the angle brackets denote a time 
average; p is the fluid viscosity and takes the values pla2 in each fluid. The 
contributions to the right-hand side of (B 1 a) are readily found by standard methods. 
We find that the decay rate y due to viscous dissipation is given by 

bhere 

Here y l ,  ..., y4 are the decay rates due to the contributions ( l ) ,  ..., (4). In the limit 
kd,, kd, +CO it is readily shown that this expression for y agrees with that obtained 
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by Harrison (1908) ; also we note that when p1 = 0 our expression for y reduces to 
the well-known result for surface gravity waves. Except in the limit kd,, kd2+oo and 
p1 4 p2, y, may be neglected. 

The growth rate of the resonant instability is s = S(+zgk)!, where S is O((kA)2)  and 
we recall that a = (p2-p1) / (p2+p1);  S is tabulated in tables 1-3. Next we evaluate 
y in the Boussinesq approximation (pl w p2) and when the lower fluid is inhitely 
deep (kd2+oo). In  this limit y, and y3 can be neglected; we also neglect y4 on the 
grounds that for internal waves in the oceanic pycnocline the upper surface is free 
and the dissipation there will be negligible compared with that from the interface. We 
also take pJp, = pz/p2 = v ;  then yz/s  is a function of D, = +kdl, (kav2/ag)i  and S.  
For a typical wave in the oceanic pycnocline we may put a = v = m2 s-, 
and choose k to correspond to a wavelength of 500 m. For the case Dl+m (table 1) 
we then find that y2/s = 0.051 for &/x  = 0.01 and y2/s = 0.004 for & / x  = 0.05. For 
the case D,/x = 0.1 (table 3) we find that y2/8 = 0.032 for & / x  =0.01 and 
y2/s = 0.003 for S1/x = 0.05. Thus, a t  least for oceanic internal waves of moderate 
amplitude, viscous dissipation occurs on a much longer timescale than that associated 
with the resonant instability, and hence may be neglected. For typical internal waves 
in the laboratory we may choose a wavelength of 50 cm and put a = this 
increases yz by a factor of about 100, and viscous dissipation will be significant for 
small-amplitude waves. Of course, in the laboratory there will also be additional 
dissipation due to the bottom and sidewall boundary layers. 
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